Suche nach PublikationenErweiterte Suche

Detailansicht

Macroeconometric Forecasting Using a Cluster of Dynamic Factor Models
WIFO Working Papers, 2020, (614), 42 Seiten
Online seit: 27.10.2020 0:00
We propose a modelling approach involving a series of small-scale factor models. They are connected to each other within a cluster, whose linkages are derived from Granger-causality tests. GDP forecasts are established across the production, income and expenditure accounts within a disaggregated approach. This method merges the benefits of large-scale macroeconomic and small-scale factor models, rendering our Cluster of Dynamic Factor Models (CDFM) useful for model-consistent forecasting on a large scale. While the CDFM has a simple structure, its forecasts outperform those of a wide range of competing models and of professional forecasters. Moreover, the CDFM allows forecasters to introduce their own judgment and hence produce conditional forecasts.
JEL-Codes:C22, C53, C55, E37
Keywords:Forecasting, Dynamic factor model, Granger causality, Structural modeling
Forschungsbereich:Makroökonomie und europäische Wirtschaftspolitik
Sprache:Englisch

Ihre Ansprechpersonen: Redaktionsteam

E-Mail: publikationen@wifo.ac.at

Mag. Ilse Schulz

Tätigkeitsbereiche: Redaktion, Website, Publikationen, Abonnentenbetreuung

Tamara Fellinger

Tätigkeitsbereiche: Redaktion, Website, Publikationen, Abonnentenbetreuung

Tatjana Weber

Tätigkeitsbereiche: Redaktion, Website, Publikationen, Abonnentenbetreuung